Most accurate measurement ever of dark matter released

0
452
Map of dark matter made from gravitational lensing

Scientists have released the most accurate measurement of dark matter ever at the American Physical Society Division of Particles and Fields meeting at the U.S. Department of Energy’s (DOE) Fermi National Accelerator Laboratory.

The Dark Energy Survey (DES) results are the closest to “forecasts” made from the Planck measurements of the distant past, allowing scientists to understand more about the ways the universe has evolved over 14 billion years. Scientists revealed during the presentation that the result supports the theory that 26 per cent of the universe is in the form of mysterious dark matter and that space is filled with an also-unseen dark energy, which is causing the accelerating expansion of the universe and makes up 70 per cent.

The primary instrument for DES is the 570-megapixel Dark Energy Camera, one of the most powerful in existence, able to capture digital images of light from galaxies eight billion light-years from Earth. The camera was built and tested at Fermilab, the lead laboratory on the Dark Energy Survey, and is mounted on the National Science Foundation’s 4-meter Blanco telescope, part of the Cerro Tololo Inter-American Observatory in Chile, a division of the National Optical Astronomy Observatory. The DES data are processed at the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign.

Scientists on DES are using the camera to map an eighth of the sky in unprecedented detail over five years. The fifth year of observation will begin in August. The new results released today draw from data collected only during the survey’s first year, which covers 1/30th of the sky.

DES scientists used two methods to measure dark matter. First, they created maps of galaxy positions as tracers, and second, they precisely measured the shapes of 26 million galaxies to directly map the patterns of dark matter over billions of light-years, using a technique called gravitational lensing.

To make these ultraprecise measurements, the DES team developed new ways to detect the tiny lensing distortions of galaxy images, an effect not even visible to the eye, enabling revolutionary advances in understanding these cosmic signals. In the process, they created the largest guide to spotting dark matter in the cosmos ever drawn. The new dark matter map is 10 times the size of the one DES released in 2015 and will eventually be three times larger than it is now.

LEAVE A REPLY

Please enter your comment!
Please enter your name here